Skip to main content

Control Charts-7 QC Tools

Control Charts-7 QC Tools

Control Charts used for M Chart & R Chart, P & C-Chart and X-Bar Charts.

What is a control chart?

Control chart signifies the provision when data goes beyond control limit and inspires the process owner to identify the assignable causes of the variation in the process to take immediate corrective action to control the process.

Why does control chart use as a QC tools?

  • A defect as a result of process variation and variation comes in the process because of assignable and common causes.
  • When data goes beyond control limits. It is because of assignable or special causes and it requires immediate corrective action to maintain the process within control limits.
  • Hence to maintain the process variation within control limits process owner requires a control chart.
           X-Bar Table:
X-Bar Table for X-Bar Chart or Control chart

       X-Bar Chart:
X-Bar Chart used in control chart

        Types of control chart.

There are two types of control charts.
1) Control charts for variables such as length weight volume etc. It is further subdivided into two categories.
  • Main chart for accuracy whereas accuracy is the closeness of average value to the target value.
  • Range chart for precision (Precision is the closeness of individual values.)
       R-Bar Table:
R-Bar Table used for control chart
        R-Bar Chart:
R-Bar Chart used for control chart
       Control charts for attributes such as (go, no-go), (OK, not OK), (good, bad) etc. It is   further subdivided into two types.
  •        P chart for proportion defective.
  •        C chart for defect count 
       P charts and C charts are used for attribute inspection in terms of is there a defect is there not a   defect
        P chart:
       P chart is used to monitor the percent or fraction of defective units within a sample.
       When you're thinking about P charts think percent defective we have a total number of items in a   sample and we're just counting how many of them are defective when we go to create the upper and   lower control limits just like we've done before we're going to take the mean and we're going to add   a number of standard deviations the mean and then we're going to take the mean and subtract the   number of standard deviations the mean for the lower control limit one thing to remember with a P   chart is we actually have to calculate the standard deviation of P and to do that we need the mean   percent effective or the average percent effective and we also need the mean sample size so in this   case it would be the square root of P bar times 1 minus P bar over N bar now typically we use 3 for Z because we typically use three standard deviations away from the mean.
UCLp = ‾p + Zσp
LCLp = ‾p – Zσp

Where ‾p= Mean percent defective.
            ‾n= Mean sample size.
Typically Z=3(3 std. Deviation from the mean)

C chart
 C chart is used to monitor the actual number (count) of defects within a sample there can be more than one defects on a unit within the sample.

Where ‾c= Mean # defects

Typically Z=3(3 std. Deviation from the mean)


Popular posts from this blog

To determine loss on drying (LOD)

To determine loss on drying (LOD) Definition:   Loss on drying compares the weight of product sample before and after drying. The result is the percentage of moisture in a product. % Moisture = (Begging weight-Ending weight) X 100                         -----------------------------------------------                                    Begging weight  Loss on drying determine by two method which is given below: Method (1):   Weigh accurately a dry empty glass Petri dish. Put the sample (about 0.5 to 5 gm as par requirement, Its mean if sample having less wet take 5 g weight. If sample having more wet than take 0.5 g weight ) in dish and weigh. Note down the reading. Distribute the sample in Petri dish by gentle shaking. Place the loaded dish (without cover) in the drying chamber for two hours. Maintain the oven temperature 105 +/- 5 0 C.  After drying is completed, open the drying chamber, cover the dish and allow it to cool at room temp.  Keep it in the desiccator for 15

IR स्पेक्ट्रोस्कोपी और इसका सिद्धांत

IR स्पेक्ट्रोस्कोपी और इसका सिद्धांत  IR स्पेक्ट्रोस्कोपी क्या है और इसका सिद्धांत क्या है? एक अणु या एक रासायनिक यौगिक में यह पता लगाने के लिए कि कौन से कार्यात्मक समूह या समूह मौजूद हैं, हम IR स्पेक्ट्रोस्कोपी तकनीक का उपयोग करते हैं। आईआर स्पेक्ट्रोस्कोपी तकनीक का प्रदर्शन करने के लिए हम विद्युत चुम्बकीय स्पेक्ट्रम की एक विशिष्ट श्रेणी का उपयोग करते हैं जिसे हम IR (इन्फ्रारेड) विकिरण कहते हैं आईआर विकिरण तरंग दैर्ध्य की विभिन्न श्रेणियों से बना है और IR विकिरण के इस अनुप्रयोग को IR स्पेक्ट्रोस्कोपी के रूप में जाना जाता है क्योंकि यह पहचानने के लिए कि सभी कार्यात्मक समूह मौजूद हो सकते हैं हम IR विकिरण का उपयोग करते हैं इसलिए जब हम किसी नमूने पर आईआर विकिरण लागू करते हैं, तो हम इस तकनीक को आईआर स्पेक्ट्रोस्कोपी कहते हैं  अब आइए नजर डालते हैं आईआर स्पेक्ट्रोस्कोपी के सिद्धांत पर   जिस किसी भी नमूना का हम विश्लेषण करना चाहते हैं (नमूना किसी भी रूप में हो सकता है - ठोस, तरल या गैस) हम उसका नमूना तैयार करते हैं और इसे आईआर स्पेक्ट्रोफोटोमीटर में डालते हैं IR स्पेक्ट्रोफोटोमीटर वह उपकरण है

Karl Fischer (K.F.)

Karl Fischer (K.F.) Karl Fischer (KF) titration is water determination techniques which is industrial scientists. It is performed by volumetric or coulometric measurement techniques. Principles of Karl Fischer titration: The KF reaction is based upon an early reaction called the Bunsen reaction, in which sulfur dioxide is oxidized by iodine with the consumption of water during this oxidation. German scientist Karl Fischer published a method in  a year 1935 for determination of water content in samples. This was a titrimetric method based on Bunsen re action used for determination of sulfur dioxide in aqueous solutions. The original reaction is as below: SO 2 + I 2 + 2H 2 O → H 2 SO 4 + 2HI The KF titration reaction currently accepted is as follows, and was reached by several advances in understanding the mechanism of the reaction and modification of the original reagent: The titration reaction is said to reach its endpoint once the iodine stops reacting with the